Lineage pathway of human brain progenitor cells identified by JC virus susceptibility.
نویسندگان
چکیده
Multipotential human central nervous system progenitor cells, isolated from human fetal brain tissue by selective growth conditions, were cultured as undifferentiated, attached cell layers. Selective differentiation yielded highly purified populations of neurons or astrocytes. This report describes the novel use of this cell culture model to study cell type-specific recognition of a human neurotropic virus, JC virus. Infection by either JC virions or a plasmid encoding the JC genome demonstrated susceptibility in astrocytes and, to a lesser degree, progenitor cells, whereas neurons remained nonpermissive. JC virus susceptibility correlated with significantly higher expression of the NFI-X transcription factor in astrocytes than in neurons. Furthermore, transfection of an NFI-X expression vector into progenitor-derived neuronal cells before infection resulted in viral protein production. These results indicate that susceptibility to JC virus infection occurs at the molecular level and also suggest that differential recognition of the viral promoter sequences can predict lineage pathways of multipotential progenitor cells in the human central nervous system.
منابع مشابه
JC virus can infect human immune and nervous system progenitor cells: implications for pathogenesis.
Recent advances in stem cell biology have called attention to the role these cells may play in the pathogenesis of systemic and nervous system diseases. Although not capable of indefinite self renewal and pluripotentiality as stem cells are, progenitor cells can give rise to cells of different lineages. It is infection of these differentiated cells that has traditionally been associated with th...
متن کاملFingolimod Enhances Oligodendrocyte Differentiation of Transplanted Human Induced Pluripotent Stem Cell-Derived Neural Progenitors
Multiple sclerosis (MS) is an autoimmune disease which affects myelin in the central nervous system (CNS) and leads to serious disability. Currently available treatments for MS mainly suppress the immune system. Regenerative medicine-based approaches attempt to increase myelin repair by targeting endogenous progenitors or transplanting stem cells or their derivatives. Fingolimod exerts anti-inf...
متن کاملFingolimod Enhances Oligodendrocyte Differentiation of Transplanted Human Induced Pluripotent Stem Cell-Derived Neural Progenitors
Multiple sclerosis (MS) is an autoimmune disease which affects myelin in the central nervous system (CNS) and leads to serious disability. Currently available treatments for MS mainly suppress the immune system. Regenerative medicine-based approaches attempt to increase myelin repair by targeting endogenous progenitors or transplanting stem cells or their derivatives. Fingolimod exerts anti-inf...
متن کاملReovirus oncolysis: a brief insight on molecular mechanism and immunological aspect
Abstract : Reovirus (respiratory enteric orphan virus), a naturally occurring benign human pathogen, has an inherent ability to target transformed and cancerous cells and cause their lysis, while leaving non-transformed cells relatively unaffected. The efficiency of this innate oncolytic activity of reovirus correlates with expression of the ras oncogene. Cells expressing ac...
متن کاملChronic Exposure of Human Endothelial Progenitor Cells to Diabetic Condition Abolished the Regulated Kinetics Activity of Exosomes
By virtue of lifestyle change, incidence of type 2 diabetes is increasingly being raised with different up-surging pathologies. This condition found to disqualify endothelial progenitor cells during neo-vascularization. Besides to an aborted differentiation property, malfunctioned paracrine activities exacerbate vascular abnormalities. It is found nano-scaled exosomes play essential roles on re...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Annals of neurology
دوره 53 5 شماره
صفحات -
تاریخ انتشار 2003